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It is very important to know how to allocate tolerances econ-
omically for parts in a CAD/CAM system because this directly
affects the machining costs of the parts. A new approach
based on fuzzy comprehensive evaluation (FCE) and a genetic
algorithm (GA) is presented to obtain a rational tolerance
allocation for the parts. First, the current methods for tolerance
allocation are reviewed in detail. Then, FCE is used to evaluate
the machinability of a part; a new optimal model, which can
fully exploit DFA (design for assembly) and DFM (design for
manufacturing), is established by combining the functional
sensitivity factors and machinability factors of parts. A genetic
algorithm (GA) is developed and used to optimise the above
model. Finally, an actual example is used to verify the feasi-
bility of the above method; the computed result shows that
the method can produce tolerance allocations economically
and accurately.

Keywords: Fuzzy comprehensive evaluation; Genetic algorithm;
Tolerance allocation

1. Introduction

In mechanical design, geometric and dimensional tolerances
are used to specify the range within which a part geometry and
size may vary while conforming to the functional requirements.
Assigned tolerances have a direct effect not only on the
machining costs but also on the product quality. Unnecessarily
tight tolerances result in high production costs, yet the toler-
ances should ensure that the functional performance require-
ments of the products stay within a satisfactory range. Toler-
ances which are too loose can affect the product quality, and
increase the scrap rate and production costs [1,2]. In general,
designers allocate tolerances for parts based on their experience,
and on handbooks and standards, which leads to some errors
[3]. In recent years, computer-aided tolerancing design (CATD)
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has become an important research direction in CAD systems
and integrated CAD/CAM systems [4–7].

Tolerance allocation is one of the most important problems
for CATD. Given a required tolerance for the assembly, the
planner is first faced with the problem of how to allocate
economically suitable tolerance values for the parts by consider-
ing the trade-off between functional requirements and machin-
ing costs. Many researchers considered tolerance allocation as
an optimisation problem. The tolerance values of parts were
taken as the control variables, and the machining costs were
taken as the objective function to be minimised. The tolerance
stack-up limits conditions were taken as constraints on the
variables [8–10].

In this paper, the tolerance allocation is represented as an
optimisation problem. A set of methods used is first reviewed
in detail. Fuzzy comprehensive evaluation is used to evaluate
the machinablity of parts, then a new mathematical model is
established and solved using a genetic algorithm (GA). The
tolerance allocation for an actual industrial assembly is pro-
duced by the above method, and the results show that the
method can be used economically to design the tolerance
values of parts.

2. Review: Methods for Tolerance
Allocation

2.1 General Allocation Methods

When an assembly function requirement is given, the tolerance
values ofn parts must be solved. Because the given conditions
are almost always insufficient, the tolerances are usually
regarded as equal. The methods used often include the same
tolerance method, the constant precision factor method, the
same influence method and the proportional scaling method.

2.1.1 Same Tolerance Method

In the same tolerance method, all of the tolerances of parts are
equal on the premise of satisfying the functional requirement of
the assembly, that is,
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t1 = t2 = % = tn

where ti denotes the tolerance value of parti.

2.1.2 Constant Precision Factor Method

The constant precision factor method is based on the rule of
thumb that the tolerance of a part increases as the cubic root
of the nominal size, thereby

ti = P(di)1/3

whereOti # J, the precision factorP can be calculated as

P =
J

Od1/3
i

where J denotes the functional requirement on the assembly.

2.1.3 Same Influence Method

The assembly functional requirement is influenced by two
factors. One is the toleranceti of each part, another is the
functional sensitivity coefficientji. So the same influence
method can be expressed as follows:

t1j1 = t2j2 =, %, = tnjn

2.1.4 Proportional Scaling Method

The part tolerances are first determined using a database in
the proportional scaling method. If the sum of the part toler-
ances exceeds the required assembly toleranceJ, each part
tolerance ti is relatively reduced corresponding to dimension
di. The general expression is:

d1

t1
=

d2

t2
= % =

di

ti
= % =

dn

tn

wheredi is the dimension of parti, ti is the tolerance allocated

for di, andOn
i=1

ti # J (worst tolerance analysis), orOn
i=1

t2i # J2

(statistical analysis).
In short, the above methods are very simple, but can only

evaluate the tolerance value and corresponding precision grade
of each part as a whole. These values are often used in the
initial stage of tolerance allocation.

2.2 Minimising Costs Methods

The best rule for evaluating tolerance allocation is the machin-
ing costs rule, so the minimising costs methods have been
important research topics. In these methods, the relationship
between the machining costs and the tolerance of a part is
expressed using mathematical formulae, and minimising the
total machining costs is taken as an optimal objective under
the constraints of the functional requirements. In the last 50
years, more than 10 models on the cost–tolerance relationship
have been presented. They are shown in Table 1.

These models are all based on the empirical cost–tolerance
data frequently used in production processes [20,21]. The model
parameters are determined using the least-squares method based

on these data. Owing to the lack of available production data
about the costs–tolerance relationship, and the fact that the
machining costs will change when the machining context
changes, the applications of the methods are very limited.

2.3 Comprehensive Factor Method

The quantitative evaluation of the machinability of each part
is called the comprehensive factor. Because machining costs
are strongly related to the machinability, the relative machining
costs of each part can be evaluated using its comprehensive
factor. Usually, after the appropriate weight value of each
factor (which has important effects on machining costs) is
given, the comprehensive factor can be calculated by:

Fi = Fi1Fi2 % Fij % Fim (i = 1, 2, %, n;

j = 1, 2, %, m) Pi = FiYOn
i=1

Fi

where i (i=1 % n) denotes the number of parts,m is the
number of factors relative to machinability,Pi is the percentage
scaling which indicates the relative machinability of parti on
the whole assembly. Generally, the factors that influence mach-
ining costs include machining methods, part materials, part
geometrical structure, part size, etc. Because these factor values
can only be satisfactorily determined by experts with abundant
production knowledge and experience, the method is subjective.

2.4 Artificial Intelligent Method

Artificial intelligence techniques are currently used for CATD.
Kopardekar and Anand [22] presented a neural network-based
method for tolerance allocation, taking into account machin-
ability and mean shifts. The neural network can predict individ-
ual part tolerances, and is shown in Fig. 1.

The advantages of the proposed method are:

1. The procedure does not need any assumption about distri-
bution of the part dimensions, unlike statistical techniques.

2. This method can be extended to the assemblies of numbers
of parts.

However, some disadvantages limit its application, such as:

1. The approach requires some data with known outputs.
2. The approach is not very efficient when the number of

parts is small.

Dupinet [9] presented a new method that used fuzzy infer-
ence to evaluate the manufacturing difficulties of a part. All
fuzzy rules were given by an expert and could be changed to
accommodate the knowledge of other companies or other expert
skills, so the method is very simple, but sometimes the experts
have great difficulty in defining the fuzzy rules.

3. Tolerance Allocation Based on FCE
and GA

The major drawback of the general allocation methods is that
they do not take into account the machining costs. In the
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Table 1.Cost–tolerance models presented.

Model Mathematical expression Reference

Exponential c(d) = a0e−ai [11, 19]
Reciprocal squared model (R-squared) c(d) = a0/d2 [12, 19]
Reciprocal powers model (R-power) c(d) = a0d

−ai [13, 19]
Reciprocal powers and exponential hybrid model (RP-E hybrid) c(d) = a0d

−aie−a2d [14, 19]
Reciprocal model (reciprocal) c(d) = a0/d [15, 19]
Modified exponential model (M-exponent) c(d) = a0e−a1(d−a2) + a3 dmin # d # dmax [16, 19]
Discrete Model (discrete) [17, 19]
Combined reciprocal powers and exponential model (combined RP-E) c(d) = a0 + a1d

−a2 + a3e−a4d [18, 19]
Combined linear and exponential model (combined L-E) c(d) = a0 + a1d + a2e−a

3
d [18, 19]

Cubic ploynomial (cubic-p) c(d) = a0 + a1d + a2d
2 + a3d

3 [18, 19]
Fourth-order polynomial (4th-p) c(d) = a0 + a1d + a2d

2 + a3d
3 + a4d

4 [18, 19]
Firth-order polynomial (5th-p) c(d) = a0 + a1d + a2d

2 + a3d
3 + a4d

4 + a5d
5 [18, 19]

Neural network model [20]

Fig. 1. Network architecture.

minimising costs method, the machining costs are taken into
account, but it is difficult to determine the cost–tolerance
relationship for every machining process. In fact, the designer
can evaluate a non-uniform cost–tolerance relationship only
according to previous experience. The general rule is that the
machinability of a part determines its machining costs. The
tolerance allocation of a part depends on its machinability.

Taking into account the advantages and disadvantages of the
above methods, we propose a new method based on fuzzy
comprehensive evaluation and a genetic algorithm (see Fig. 2).

3.1 Machinability Estimator Based on Fuzzy
Comprehensive Evaluation

According to the design and machining criteria, the machin-
ability of parts depends on the dimensions, the geometrical
structure, the material machinability and the machining accu-

Fig. 2. The whole procedure of tolerance allocation using the new
approach.

racy. Clearly, these are fuzzy factors. We use two-order fuzzy
comprehensive evaluation to process the fuzzy factors. The
method and theory of fuzzy comprehensive evaluation is
referred to in [23,24].

3.1.1 Establishing the Fuzzy Factor Set

The factors of dimension size, geometrical structure, material
machinability, and machining accuracy can be expressed as:

U = { ui, u2, %, um} = {DS, GS, MM, PA} (1)

where m=4, DS: dimension size, GS: geometrical structure,
MM: material machinability, and PA: machining accuracy.

3.1.2 Grade of Factor

For evaluating accurately the value of each parameter, each
factor is divided into different fuzzy subsets such that:

ui = { ui1, ui2, %, uini
} (2)

whereuij (i = 1 | m; j = 1 | ni) denotes thejth grade of the
ith factor, ni represents the grade number of each factor (the
detailed value is shown in Table 2).

3.1.3 Establishing the Evaluation Set

Since the range of machinability is between 0 .0 and 1.0, it
can be divided into 10 equal levels, namely,

§ = { §1, §2, %, §k, %, §9, §10} = {0.1, 0.2,%, 0.9, 1.0}
(3)

where § is the fuzzy evaluation set.

3.1.4 First-Order Fuzzy Comprehensive Evaluation
Matrix

Based on the experience of experts, the first-level fuzzy com-
prehensive evaluation matrix is determined below:

R1 = 3
0.0 0.0 0.2 0.4 1.0 0.4 0.2 0.0 0.0 0.0

0.0 0.4 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.4 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.8
4

R2 = F0.2 0.4 1.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.8
G
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Table 2.Main effective factors and its grade division.

Factors Grades of each factor

Grade 1 Grade 2 Grade 3 Grade 4

u1 DS | 5mm | 25 mm | 75 mm | 120 mm
u2 GS Easy to manufacture Difficult to manufacture — —
u3 MM Good Medium Poor —
u3 PA Normal Medium Accuracy —

Note: n1=4, n2=2, n3=3, n4=3.

R3 = 3
0.4 1.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.4 1.0 0.4 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 1.0 0.6
4

R4 = 3
0.4 1.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.4 1.0 0.4 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 1.0 0.6
4

3.1.5 Establishing the Weight Vector of each Grade

The weight vector is composed of membership degrees of the
evaluation object to all grades in each grade of each factor,
shown as follows:

A i = (ai1, ai2, %, aini
) (4)

where aij = mijYOni

i=1

mij (i = 1 % 4; j = 1 % ni)

Here, mij is the membership degree of the evaluation object to
the jth grade of theith factor.

3.1.6 First-Order Fuzzy Comprehensive Evaluation

When the fuzzy comprehensive evaluation is made for every
grade of theith factor, the first-order fuzzy comprehensive set
is obtained by:

Bi = A i + Ri = (ai1, ai2, %, aini
) +

3
ri11, ri12, %, ri1p

ri21, ri22, %, ri2p

%%%%%%

rini1
, rini2

, %, rinip

4 = (bi1, bi2, %, bip) (5)

where p=10. Membership degrees are determined directly by
the experts, or by membership functions.

Here the composition operatorM(•, +), which can take into
account the effects of all factors, but can also contain all the
information of an individual factor, is expressed by

bik = Oni

j=1

aijrijk (i = {1,2,%,4}; k = {1,2,%,10}) (6)

Then, the first-order fuzzy comprehensive evaluation matrix
can be written as

R = 3
B1

B2

:

Bm

4 = 3
b11, b12, %, b1p

b21, b22, %, b2p

: :

bm1, bm2, %, bmp

4 (7)

where m=4 and p=10.

3.1.7 Determining the Weight Vector of Factors

After obtaining the first-order fuzzy comprehensive evaluation
matrix, we have to determine the weight vector of factors,
which indicates the degrees of importance of factors to the
evaluation object. It can be written as

A = (a1, a2, %, am) (8)

When assuming that DS and GS are more important than MM
and PA, we write Eq. (8) asA = (0.3, 0.3, 0.25, 0.15).

3.1.8 Second-Order Fuzzy Comprehensive Evaluation

Finally, we make the second-order fuzzy comprehensive evalu-
ation. Fuzzy setB can be calculated by

B = A + R = (a1, a2, %, am) + 3
b11, b12, %, b1p

b21, b22, %, b2p

: :

bm1, bm2, %, bmp

4 (9)

= (b1, b2, %, bp)

where m=4 and p=10.

3.1.9 Determining Parameter

Generally, the weighted averaging method is used to obtain
the accuracy of the evaluation object. It is shown as follows

§ = O10

p=1

bp§pYOn
k=1

bp (10)

According to the above steps, the machinability, which is
very important for tolerance allocation, can be determined.

3.2 Modelling of Tolerance Allocation

Machininability can be determined based on the FCE method.
The assembly response function is assumed as
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tolasm= g(tol) = tol0 + j1tol1 + j2tol2 + % + jntoln (11)

where

ji = g/(toli) (12)

where, tolasm denotes the assembly function requirement in
tolerance design,g(·) is the assembly response function,toli
represents the tolerance value of theith corresponding part,
tol0 is constant,ji, which reflects the degree of importance of
each design tolerance on an assembly, is the assembly sensi-
tivity coefficient of the ith part.

According to the experts’ experience, the largerji is, the
smaller is the corresponding tolerance allocated. Therefore, a
comprehensive factor for tolerance allocation,Ci, can be pro-
duced as follows:

ci =
zi

j2
i

=
zi

S g
(toli)

D2
(13)

where zi is the machinability ofith part obtained by the FCE.
Referencing to the reciprocal model, a model of the optimal
tolerance allocation can be expressed as follows:

Min C = f(tol) = C0 + On
i=1

ji

toli

Subject to:l i # toli # ui, 1 # i # n (14)

l # tolasm # u

whereC denotes the total machining costs,f(tol) is the function
relationship of cost–tolerance,C0 is the costs constant,L =
(l1, l2, %, ln) and U = (u1, u2, %, un) are constraint vectors
for design tolerance of parts in an assembly,l and u represent
the upper and lower limit of the assembly requirement.

3.3 Genetic Algorithm

A genetic algorithm, which is a recently developed heuristic
optimisation strategy, has been used for global optimisation in
a variety of research fields. A GA is based on the mechanics
of natural selection and natural genetics and Darwinian survival
of the fittest. Detailed discussion of the mechanisms of GA
can be found in [25,26].

GA is different from traditional search methods encountered
in engineering optimisation problems. GA works with a coding
of the design variables as opposed to the variables themselves –
continuity of parameter space is not a requirement. GA searches
from a population of points, not a single point – parallel
processing of points reduces the chance of being trapped into
a local optimum. GA uses probabilistic transition rules, not
deterministic transition rules, which leads to high-quality sol-
utions, and GA requires only the objective function values,
these minimal requirements result in a broad applicability
of GA.

These important features of GA, such as the flexibility,
global application, parallelism, simplicity, versatility, good
problem solving capability, etc, make genetic algorithms very
useful, and therefore popular. During the last decade, genetic
algorithms have had increasing applications in a variety of

fields with promising results. Recently, some work has been
successfully carried out using genetic algorithms for optimal
engineering design problems.

The application of GA for tolerance optimisation allocation
is given in the following sections.

3.3.1 Representation Scheme

In genetic algorithms, representation is an essential issue
because the representation scheme links the real-world problem
to the genetic algorithms and the genetic algorithms directly
manipulate the coded representation of the problem. There are
many kinds of representations, such as binary digit string
representation, floating point representation, permutations of a
list, etc. The selection of an appropriate representation depends
on the characteristics of the search space.

Because machining precision is known in the tolerance
allocation problem, the tolerance variable is considered as a
discrete one in the feasible design domain. We adopt the binary
digit string representation. Ifpi is the machining precision of
the tolerance design variabletoli, then its string lengthli is
determined by the following inequity:

li = log2 Stolui − tolli
pi

+ 1D (15)

where tolui and tolli are upper and lower bounds of theith
tolerance design variable.

After the string length of each tolerance design variable has
been determined, the length of the chromosome is computed
from:

A = On
i=1

li (16)

where n is the number of independent tolerance design vari-
ables.

3.3.2 Decoding

If the ith binary digit substring of a chromosome is decoded
into an unsigned decimal integerIi, then the physical value of
the ith tolerance design variabletoli is computed by:

toli = tolli + Iipi (17)

3.3.3 Fitness Function

Fitness is a quality value, which is a measure of the repro-
ductive efficiency of living creatures according to the principle
of survival of the fittest. In genetic algorithms, the fitness is
used to allocate reproductive trials and thus is some measure
of goodness to be maximised. This means that strings with
higher fitness values will have a higher probability of being
selected as parents.

Tolerance allocation is a constrained minimisation problem.
If the objective function is also expressed by:

Min f(tol) (18)
s.t. bi(tol) $ 0 (i = 1, 2,%, m)

Wherebi(tol) is the constrained function, then it can be trans-
formed to an unconstrained problem by the exterior penalty
function method.
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Max F(tol) (19)

where the fitness functionF is computed by the following func-
tion:

F(tol) = G(tol) P(tol) (20)

where

G(tol) = 5
K

1 + (1.1)bf (g $ 0)

K
1 + (0.9)bf (g , 0)

(21)

P(tol) =
1

(1.1)f(tol) (22)

f(tol) = Om
i=1

ubi(tol)u (23)

Where P(tol) denotes the penalty function,G(tol) is used to
describe the quality of the solution,K and b are constant. In
general,K=1, b is computed by:

b = H1 (f(tol) $ 0)

−1 (f(tol) , 0)
(24)

3.3.4 Linear-Fitness Scaling

Since the strings with higher fitness values have a higher
probability of being selected as the parents, it is important to
confine the allocation of selection to the best strings, especially
in small population genetic algorithms. The fitness scaling can
regulate and tune the number of times selected to prevent the
domination of extraordinary individuals, and therefore it can
prevent premature convergence. In addition, the fitness scaling
can encourage a healthy competition among near equals when
the population average fitness is close to the population best
fitness.

A linear scaling formula is adopted with a normalisation
process as follows:

F9 = 1 −
Fmax − F

Fmax − Fmin

(25)

where F9 is the scaled fitness,F is the raw fitness,Fmax and
Fmin are maximum and minimum fitness, respectively.

3.3.5 Selection

The selection operator determines the set of individuals, which
remain at the next generation. The roulette wheel selection
scheme is used herein. This scheme is implemented as a linear
search through a roulette wheel with each slice weighted in
proportion to a scaled fitness value, the selection operator is
obtained as follows:

1. Sum the fitness values of all the population members. The
result is the total fitnessFtotal.

2. Generate a random numberR between 0 and 1, then multiply
Ftotal by R to generate an index numberN:

N = R × Ftotal (26)

3. Return the first population member whose fitness, added to
the fitness of the processing population members, is greater
than or equal toN.

3.3.6 Crossover

Crossover is a primary operator in genetic algorithms and is
the key to the success of genetic algorithms. We generate new
individuals I′a and I′b from parent individualsIa and Ib which
are selected randomly from the population. They are divided
into subparts at multiple points of crossover, and the new
individuals are obtained by swapping them between these indi-
viduals.

3.3.7 Mutation

The mutation operator arbitrarily alters the gene value accord-
ing to a predetermined probability. The mutation probability
should be carefully prescribed. If the mutation probability is
low, then the algorithm is often trapped at a local optimum.
However, if the mutation probability is high, then the propa-
gation of good schemata will be unduly hindered and the
algorithms will degenerate to a random search method.

We use a new strategy to decide if the mutation operator
is invoked. First, the numberN of the same individual in a
population is computed, then ifN is greater than or equal to
Nsame, then the mutation operator is invoked, otherwise, the
crossover operator is used. Here,Nsame is a new control para-
meter for the algorithm and represents the permissible number
of the same individuals in the population.

3.3.8 Memory Tool

We use memory tool (MT) to “remember” the best individual
of a generation. When the best individual of the next generation
is better than the one in MT, MT is updated using the new
individual. Finally, the solution of GA is obtained from MT.

3.3.9 Parameters

For the tolerance allocation problem, the parameters are selec-
ted as follows:

Population size = 100
Generation = 500
Crossover probability = 0.95

Nsame = 30

The procedure of the modified genetic algorithm is described
as follows:

Start Program:
a. Initialise (some essential parameters (GS,Pc, Nsame, n));
b. Initialise (MT);
c. Generate (the first generation population randomly);
d. Compute (their fitness);
e. For i = 1 to GS do

Begin
If (the random numberr is greater thanPc) continuous;
Else
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Fig. 3. The driving device and its dimension loop chain.

Calculate (the number of the same individual
in population);
If (n greater than or equal toNsame)

Do (mutation operation);
Else

Do (crossover operation);
Update (MT);
Do (reproduction operation to product next generation);

End
f. Output (the individual of memory tool).

End (Program).

Where GS denotes the terminal generation number,n is the
variable of counting, andPc represents the crossover prob-
ability.

4. Example

In order to verify the proposed method, a driving device (see
Fig. 3) is taken as an example. In Fig. 3,L1=160 mm,L2=L4=5
mm, L3=150 mm. ClearanceL0, which is the assembly function
requirement, is needed to assemble the product without inter-
ference.

To solve the tolerance allocation problem, Tables 3–5 list
the membership degrees of the four corresponding dimensions
on the assembly, according to the known conditions.

Using the above method, the machinability vector of four
corresponding part dimensions is obtained as follows:

z = {0.66, 0.41, 0.76, 0.41}

Table 3.Membership degrees of length of the shaft shoulder.

Factor Grades of each factor

I II III IV

u1 Dimension size 0.0 0.0 0.0 1.0
u2 Geometrical structure 0.85 0.0 — —
u3 Material machinability 0.0 0.0 1.0 —
u3 Process accuracy 0.5 0.5 0.0 —

Table 4.Membership degrees of thickness between end faces of left
or right bearing.

Factor Grades of each factor

I II III IV

u1 Dimension size 1.0 0.0 0.0 0.0
u2 Geometrical structure 0.85 0.0 — —
u3 Material machinability 0.2 0.6 0.5 —
u3 Process accuracy 0.5 0.5 0.0 —

Table 5.Membership degrees of thickness between end faces of car-
riers.

Factor Grades of each factor

I II III IV

u1 Dimension size 0.0 0.0 0.0 1.0
u2 Geometrical structure 0.5 0.85 — —
u3 Material machinability 0.0 0.9 0.5 —
u3 Process accuracy 0.0 0.0 1.0 —

where, part 1 is the shaft shoulder; parts 2 and 4 are the left
or right bearing, respectively; part 3 is the carrier. The result
shows that the carrier is the most difficult to machine, and the
left and right bearings are the easiest. This coincides with
the practical machining case, so the approach is proved to
be correct.

It is assumed that the two clearances are combined, the
whole clearance is from 0.10 mm to 0.40 mm and its tolerance
is 0.03 mm. The function equation is written as:

tolasm = g(tol) = tol1 − tol2 − tol3 − tol4

Using Eq. (12), the vector of the function sensitivity factors
is solved as follows:

j = {1.0, −1.0,−1.0,−1.0}

A comprehensive factor vector of tolerance allocation is
obtained using Eq. (13):

c = {0.66, 0.41, 0.74, 0.41}

Therefore, a mathematical model for the tolerance allocation
is established using Eq. (14):

Min C = C0 +
0.66
tol1

+
0.41
tol2

+
0.74
tol3

+
0.41
tol4

Subject to: 0.0# toli # 0.30, 1# i # 4

0.0 # tolasm # 0.30

The tolerance vector computed by the improved GA is:

tol = {0.8, 0.06, 0.10, 0.06}

According to the principle that determines the bias of parts,
the tolerance design result is:

L1 = 160+0.00
−0.08, L2 = 5+0.00

−0.06, L3 = 150−0.18
−0.28, L4 = 5+0.00

−0.06
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5. Summary

This paper presents a new approach based on fuzzy comprehen-
sive evaluation and GA for tolerance allocation. In the tolerance
allocation, the machinability, which depends on the fuzzy
comprehensive evaluation and the function sensitivity factor,
is considered, so the ideas of DFA and DFM are involved.
The approach not only ensures the correctness of tolerance
design, but also saves the machining costs. In addition, the
improved GA is used to optimise the model based on DFA
and DFM. The result of a detailed example shows that the
method presented can obtain tolerance allocations with econ-
omically attainable accuracy.
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