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Abstract

Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies
for machine condition analysis and process monitoring. AE has been proposed and evaluated for a variety of sensing tasks as well
as for use as a technique for quantitative studies of manufacturing processes. This paper reviews briefly the research on AE sensing
of tool wear condition in turning. The main contents included are:

1. The AE generation in metal cutting processes, AE signal classification, and AE signal correction.
2. AE signal processing with various methodologies, including time series analysis, FFT, wavelet transform, etc.
3. Estimation of tool wear condition, including pattern classification, GMDH methodology, fuzzy classifier, neural network, and

sensor and data fusion.

A review of AE-based tool wear monitoring in turning is an important step for improving and developing new tool wear monitor-
ing methodology. 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Acoustic emission; Tool wear monitoring; Turning

1. Introduction

‘Acoustic emission (AE) is the class of phenomena
whereby transient elastic waves are generated by the
rapid release of energy from a localized source or
sources within a material, or the transient elastic wave(s)
so generated’ (ANSI/ASTM E 610-77). Clearly, an AE
is a sound wave or, more properly, a stress wave that
travels through a material as the result of some sudden
release of strain energy. In recent years, AE instruments
and systems have been developed for the monitoring and
nondestructive testing of the structural integrity and gen-
eral quality of a variety of materials, manufacturing pro-
cesses, and some important devices.

Applications of AE for nondestructive testing are
found in numerous industries, including refineries, pipe-
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lines, power generation (nuclear or other), aircraft, off-
shore oil platforms, paper mills and structures (bridges,
cranes, etc.). AE products are also used for quality con-
trol in manufacturing operations and in research appli-
cations, and have important applications involving com-
posite structures such as fiberglass, reinforced plastics
and advanced aerospace materials.

Tool wear is a complex phenomenon occurring in dif-
ferent and varied ways in metal cutting processes. Gen-
erally, worn tools adversely affect the surface finish of
the workpiece and therefore there is a need to develop
tool wear condition monitoring systems which alert the
operator to the state of tool, thereby avoiding undesirable
consequences. Various methods for tool wear monitoring
have been proposed in the past, even though none of
these methods was universally successful due to the
complex nature of the machining processes. These
methods have been classified into direct (optical, radio-
active and electrical resistance, etc.) and indirect (AE,
spindle motor current, cutting force, vibration, etc.) sens-
ing methods according to the sensors used. Recent
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attempts have concentrated on the development of the
methods which monitor the cutting processes indirectly.
Among these indirect methods, AE is one of the most
effective for sensing tool wear. The major advantage of
using AE to monitor tool condition is that the frequency
range of the AE signal is much higher than that of the
machine vibrations and environmental noises, and does
not interfere with the cutting operation.

Grabec and Leskovar [1] first analyzed the sound
emitted by the cutting process of aluminum alloy, and
found that the spectrum of the audible frequency is dis-
crete, while that of the ultrasonic range (later known as
AE) is continuous. They studied the influence of the rel-
evant cutting parameters on the spectral distribution, and
gave a qualitative explanation of the corresponding
effects. The most important is to point out that AE could
possibly be used to evaluate the sharpness of a cutting
tool. Using an AE signal to monitor tool wear condition
in cutting processes was started by Iwata and Moriwaki
[2]. They found two important conclusions: the power
spectrum of AE signals up to 350 kHz increased with
the tool wear and then reached saturation; and the total
AE count was closely related to the tool wear. Since
these initial reports, numerous studies have established
the effectiveness of AE-based sensing methodologies for
tool condition and cutting process monitoring.

In this paper, we review the AE-based tool wear con-
dition monitoring in turning, which includes AE signal
generation and correction in cutting processes, AE signal
processing, and tool wear estimation.

2. AE signal in the cutting process

2.1. AE signal source

Research has shown that AE, which refers to stress
waves generated by the sudden release of energy in
deforming materials, has been successfully used in lab-
oratory tests to detect tool wear and fracture in single-
point turning operations. Dornfeld (1989) [8] pointed out
the following possible sources of AE during metal-
cutting processes (see Fig. 1):

(a) plastic deformation during the cutting process in
the workpiece;
(b) plastic deformation in the chip;
(c) frictional contact between the tool flank face and
the workpiece resulting in flank wear;
(d) frictional contact between the tool rank face and
the chip resulting in crater wear;
(e) collisions between chip and tool;
(f) chip breakage;
(g) tool fracture.

Fig. 1. AE generation during metal cutting.

Fig. 2. Typical AE signals in turning. Cutting speed, v=100 m/min;
feed rate, f=0.2 mm/rev; depth of cut, d=2 mm; workpiece material,
middle steel, hardness HB=125; cutting tools, CNMG 12 04 04-QF.

2.2. AE signal

Based on the analysis of AE signal sources, AE
derived from metal turning consists of continuous and
transient signals, which have distinctly different charac-
teristics. Continuous signals are associated with shearing
in the primary zone and wear on the tool face and flank,
while burst or transient signals result from either tool
fracture or chip breakage. Therefore, from (a) to (d)
sources generate continuous AE signals, while from (e)
to (g) generate transient AE signals (see Fig. 2). The AE
signal types in cutting process show in Fig. 3.

Fig. 3. AE signal type in cutting process.
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Uehara [3] has found that the amplitude of an AE sig-
nal from the workpiece is reduced decisively during AE
transfer from workpiece to tool possibly by reflection at
the interface. As a result, the friction between workpiece
and tool and the tool fracture can be regarded as the
most important sources of continuous and transient AE
signals during turning, respectively. Therefore, the
amplitude of the continuous-type AE signal could be
used to monitor the wear of a cutting tool, as in [4,5].

In [5], continuous and discontinuous AE in turning are
used to test gradual wear and intermittent degradation
of cutting tools, respectively. The effects of machining
parameters on characteristic AE obtained during machin-
ing were studied based on the frequency analysis of AE
signal. In [6], the characteristic features of acoustic emis-
sion signals were analyzed during turning of medium
carbon steel with a coated tool and uncoated tools. It
was found that the AE signal changed from the burst
type to a continuous type as the wear of the coated tool
progressed and the ceramic coating was removed.

2.3. AE signal correction

Before studying AE signal in turning, we need to
obtain an AE signal from the cutting system. The piezoe-
lectric AE sensor was attached to the side of a tool
shank. The AE signal was initially 40 dB pre-amplified
and bandpass filtered. A bandpass filter with a range of
100 kHz–1 MHz was used to reduce the influence of
low-frequency noise, and then the signal became full-
wave rectified and averaged with a time constant of 1.2
ms. The AE RMS voltage output was sampled by a com-
puter at 2.5 kHz (see Fig. 4).

3. AE signal processing

An AE signal is non-stationary and often comprises
overlapping transients, whose waveforms and arrival
times are unknown. A common problem in AE signal
processing is to extract physical parameters of interest,
such as tool wear, when these involve variations in both
time and frequency. Many quantifiable characteristics of
AE can be displayed as follows [7]:

Ring down count: the number of times the signal
amplitude exceeds the present reference threshold;
AE event: a micro-structural displacement that pro-
duces elastic waves in a material under load or stress;
Rise time: the time taken to reach peak amplitude
from the first present threshold voltage crossing of
the signal;
Peak amplitude: this can be related to the intensity of
the source in the material producing an AE signal;
RMS voltage: a measure of signal intensity.

Fig. 4. AE signal correction and pre-processing.

Many signal processing methods have been used to
analysis AE signals, with the aim to extract the features
of AE signals for testing or monitoring. The main
methods include time series analysis, fast Fourier trans-
form (FFT), Gabor transform (or window (local) Fourier
transform), Wigner–Ville distribution, and wavelet trans-
form.

3.1. Time series analysis

In [7,8], a time series modeling technique was used
to extract parameters from AE signals acquired during
turning. Autoregressive (AR) parameters and AR
residual signals are taken as features for monitoring tool
wear condition.

Set an AR model as follows:

x̄(n)�a1x(n�1)�a2x(n�2)�…�a5x(n�5) (1)

R(n)�x̄(n)�x(n)

where x(n) is the RMS AE time series, x̄(n) is the AR
predicted value, a1,a2,…,a5 are the AR model para-
meters, and R(n) is the AR residual signal.

The experimental results have found that the power
of the AR residual signal of the AE increases with
increases of the flank wear of the cutter in turning. The
AR parameters a1,a2,…,a5, were divided by a5 to reduce
the feature size to A1,A2,A3, and A4, and these parameters
and the cutting parameters (cutting speed, v m/min; feed
rate, f mm/rev; depth of cut, d mm) were taken as the
input vectors for estimating tool wear condition.

Chung et al. [9] presented the application of AE and
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tool acceleration measurements to in-process assessment
of machining quality in the context of tool wear and
chatter. Adaptive time series modeling and band-filtered
energy analysis were implemented in conjunction with
the cutting condition classification based on artificial
neural networks.

3.2. Fourier transform

An energy-limited signal f(t) can be decomposed by
its Fourier transform F(w), namely

f(t)�
1

2p �
��

��

F(w) eiwt dt (2)

where

F(w)� �
��

��

f(t) e−iwt dt (3)

f(t) and F(w) are known as a pair of Fourier transforms.
Eq. (2) implies that f(t) signal can be decomposed into
a family with harmonics eiwt and the weighting coef-
ficient F(w) represent the amplitudes of the harmonics
in f(t). F(w) is independent of time, it represents the fre-
quency composition of a random process, which is
assumed to be stationary so that its statistics do not
change with time.

Fourier transform has been successfully used to pro-
cess the AE signal during turning. In [10], experimental
results have shown that the magnitude of the AE in the
frequency domain was sensitive to the change of tool
state. However, the AE signal is essentially non-station-
ary. If we calculate the frequency composition of non-
stationary signals by using Fourier transform, the results
are the frequency composition averaged over the dur-
ation of the signal. As a result, Fourier transform cannot
describe adequately the characteristics of the transient
signal in the lower frequency.

3.3. Gabor transform

The Gabor transform or short-time Fourier transform
(STFT) is the best known time–frequency technique, and
it has been applied to signal processing, such as the com-
plex AE signals [11]. In general, the STFT method is
used to deal with non-stationary signals. STFT has a
short data window centered at time. Spectral coefficients
are calculated for this short length of data, the window
is then moved to a new position and the calculation
repeated. Assuming an energy-limited signal, f(t) can be
decomposed by STFT, namely

G(w,t)��
R

f(t) g(t�t) e−iwt dt (4)

where g(t�t) is called the window function. If the length
of the window is represented by time duration T, its fre-
quency bandwidth is approximately 1/T. Using a short
data window means that the bandwidth of each spectral
coefficient is of the order 1/T and is therefore wide. A
feature of the STFT is that all spectral estimates have
the same bandwidth.

In [12], time–frequency representation of output spec-
trums of an AE sensor obtained from head-disk experi-
ments giving evidence of stationary and non-stationary
behavior is investigated. Gabor transform provides a
natural framework for processing AE signals consisting
of transients whose waveforms agree with the window
function.

However, Gabor transform is badly adapted to signals
where patterns with different scales appear, and it
resolves short time phenomena associated with high fre-
quencies poorly. Moreover, the representation coef-
ficients can never be interpreted as local energy meas-
ures [13].

3.4. Wavelet transform

The basic idea behind signal processing with wavelets
is that the signal can be decomposed into its component
elements through the use of basic functions. In the case
of wavelet analysis, the basic functions consist of the
wavelet scale function, and scaled and shifted versions
of the mother wavelet. Unlike in Fourier analysis, the
basic function is sine or cosine waves.

Given a time-varying signal f(t), the wavelet transform
(WT) consisted of computing a coefficient that is the
inner product of the signal and a family of wavelets. The
wavelet transform can be given by

yj,k(t)�2−j
2y(2−j t�k)

d0,0��f(t),f(t)� (5)

dj,k��f(t),yj,k(t)�, j�1,…,N, k�1,…,2j−1

where the yj,k(t) is the scaled and shifted version of the
mother wavelet function y(t), f(t) is the scale function,
dj,k are the wavelet coefficients, and N is the number
of wavelet scales over which the wavelet transform is
generated, usually chosen as a power of 2.

Kamarthi et al. [14] dealt with the representational and
analysis issues of AE signals in turning processes. The
effectiveness of the wavelet representation of AE signals
is studied in the context of flank wear estimation prob-
lem in turning processes. A set of turning experiments
is conducted in which the flank wear is monitored
through AE signals. Specially designed neural network
architecture is used to relate AE features to flank wear.
The accurate flank wear estimation results indicate that
the wavelet transform representation of AE signals is
very effective in extracting the AE features sensitive to
gradually increasing flank wear.
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Li [15] presented a real-time tool breakage detection
method for small-diameter drills using AE and current
signals. The features of tool breakage were obtained
from the AE signal using typical signal processing
methods. The continuous wavelet transform (CWT) and
the discrete wavelet transform (DWT) were used to
decompose the spindle current signal and the feed cur-
rent signal, respectively. The tool breakage features were
extracted from the decomposed AE signals. In [16], a
wavelet transform can decompose AE signals into differ-
ent frequency bands in the time domain. The root mean
square (RMS) values extracted from the decomposed
signal for each frequency band was used as the monitor-
ing feature for tool wear. Chen et al. [17] demonstrated
the sensitivity of acoustic emission to tool–work contact
and chip thickness in ultraprecision machining. A signal
processing scheme utilizing a wavelet transform that
identifies the possible dominant cutting mechanism for
a certain cutting state, given the AE signals from that
process, was developed.

4. Tool wear estimation

The relationship between the AE signal and tool wear
is not simple. Kim et al. [18] observed the purely pro-
gressive tool wear in turning operations. As a result, they
found that in most experimental results the refined mean
level (RML) of the averaged AE signal increases at first
with an increase of flank wear, and then stays at an
approximately constant level even with further increase
of flank wear while the fluctuation of the RML across
the constant level becomes rather high. Clearly, the
relationship between the AE signal and tool wear con-
dition is nonlinear, so the general mathematical relation
cannot be used to map this relation.

If we can look for an effective mathematical model
to map the relationship between the AE signal (some
features) and tool wear, the AE signal could be used to
monitor tool wear condition in real time for turning.
Some models have been presented, such as (in [19]) a
linear regression model developed to relate the flank
wear of a carbide turning insert with the cumulative
count of AE, and the limiting value of the cumulative
AE count for the limiting flank wear was predicted using
this model. In [20], the AE count rate has been found
to be a reliable parameter for predicting the flank wear
of a cutting tool in real time. A linear regression model
has been developed to relate the flank wear of a carbide
turning insert with the cumulative count of AE.

In [21], the correlation between intrinsic frequencies
and AE sources is identified by examining the RMS,
dominant amplitude, type, and count rate of the AE sig-
nals. The tool life estimated from the RMS of the AE
signal is shown to be in good agreement with that
determined from measurements of the maximum wears

and width on the tool nose. The results obtained demon-
strate that AE is an effective technique for in-process
wear monitoring and wear mechanism identification of
multilayer ceramic-coated tools.

To effectively monitor different tool wear conditions,
while avoiding the effect of other factors such as cutting
parameters, some methodologies have been presented,
as follows.

4.1. Pattern classification methodology

Pattern classification is a problem of separating each
cluster pattern from a given source into a region charac-
teristic of that particular class. For this, define a set of
scalar functions, {fj(X)}, where X is the given pattern,
and generated by source Ci, the function fj(X) will be
maximized, i.e.

max
1�j�C

{fj(X)}�fj(X), if X�Ci. (6)

For computational simplicity, {fj(X)} are chosen to be
linear functions, and a least mean squared error design
is used to obtain the weights of these functions.

Emel and Kannatey-Asibu [22,23] applied a pattern
classification methodology for sensing tool failure in
turning. They developed a linear discriminate function-
based technique for detection of tool wear, tool fracture,
or chip disturbance events by using the spectra of AE
signals. In [24], the combined output of radial force, feed
force and AE (RMS value) is utilized to model the tool
flank wear in a turning operation. The tool wear sensing
system consists of two phases: training and classi-
fication. The training phase is done off-line and is used
to determine the weight coefficients for the linear
decision functions using the prototype patterns from the
cutting tests. The classification phase is in real time. The
linear decision functions of the prototype test selected
are used for classifying the incoming signal of the actual
cutting test into one of three wear classes.

4.2. GMDH methodology

The group method of data handing (GMDH) [25] was
developed in the 1960s by Ivaknenko. The algorithm is
able to contract a regressive mathematical model of high
order, which can accept a large number of variables and
automatically organize a gradually more complex model
until an optimal model is attained.

Suppose that the phenomenon under observation is
regulated by m independent variables x1,x2,%,xm, and we
can record a large number n of observations of variables
m and of the dependent variable y for several cases of
the phenomenon studied. The simplest equations that can
be written are those that take all the variables in pairs
as if only one pair is meaningful enough to describe the
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phenomenon. For example, observations with the generic
pair of variables xi, xj, can be written;

y�a�bxi�cxj�dxiyj�ex2
i �fx2

j (7)

In [26], the decision tree method and the GMDH were
adopted for the recognition and prediction of the tool
wear state in a turning operation using acoustic emission
and cutting force signals. The GMDH algorithm deter-
mines a representation of the real-time machining system
interrelationship between tool flank wear and the quanti-
tative measure of sensor variables involved. The derived
model was used to predict the tool wear from the in-
process sensor output features.

4.3. Fuzzy classifier

Fuzzy c-means algorithm is one of the most popular
methods in the fuzzy classifier. In this approach, the aim
in clustering is to determine the cluster centers, which
are representative values of features corresponding to the
classified categories. Once clustering centers are determ-
ined at the learning stage, then the classification is made
by the comparison of the incoming pattern and each
clustering center.

Let X={X1,X2,…,Xn}�R, where each Xi=(xi1,xi2,…,xis)
�R is a feature vector; xij is the jth feature of individual
xi. For each integer c, 2�c�n, let Vcn be the vector space
of c×n matrices with entries in [0,1], and let uij denote
the ijth element of any U�Vcn. The function ui: X→[0,1]
becomes a membership function and is called a fuzzy
subset in X. Here uij=ui(xj) is called the grade of member-
ship of xj in the fuzzy set ui. In the space of samples,
we suppose that there are n samples, which can be div-
ided into c classes. Consider the following subset of Vcn:

Mfc��U�Vcn|uij�[0,1]∀ i,j; �c

i�1

uij�1∀ j; �c

i�1

uij (8)

�0∀ i�
Each U�Mfc is called a fuzzy c-partition of X; Mfc is
the fuzzy c-partition space associated with X. For any
real number m�[1,5], define the real-valued functional
J: Mfc×Lc→R by

J(U,V)��n

k�1

�c

i�1

(uik)m||xk�vi||2 (9)

1�m��, and usually m=2. where U={uik} is the mem-
bership function, with uik�[0,1], which denotes the
degree of membership of the kth pattern and ith cluster
centers; V={v1,v2,…,vc} is a vector of c clusters. These
vi are interpreted as clusters defined by their companion
U matrix, and play a fundamental role in our develop-

ment. The functional J is a weight, least squares objec-
tive function. In order to obtain the optimum fuzzy par-
tition, this objective function must be minimized, i.e.

minimize {J(U,V)} (10)

The optimal solution to the above equation is that

uik�
1

�c

j�1

�||Xk−Vi||
||Xk−Vj ||

�2/(m−1)
, ∀ i,k (11)

Vi�

�n

k�1

(uik)mXk

�n

k�1

(uik)m

, ∀ i (12)

Suppose that under a given cutting condition, the fea-
tures of training data sets determine a clustering center.
Then all subsequent observations can be classified by
using Eq. (11). That is

uk0�
1

�c

j�1

�||X0−Vi||
||X0−Vj ||

�2/(m−1)
, ∀ i,k (13)

where uk0 is the fuzzy grade of the current observation
being assigned to the kth wear state category and X0 is
the current observation.

In [10], a wavelet packet transform is used to capture
the features of the AE signal, which are sensitive to the
changes in tool wear condition, but are insensitive to
the variation in process working conditions and various
noises. The extracted features are classified by using the
fuzzy ISODATA algorithm. As a result, the tool wear
condition can be estimated over a wide range of cutting
conditions for boring.

4.4. Neural networks

Neural networks are organized in layers each con-
sisting of neurons or processing elements that are inter-
connected. There are a number of learning methods to
train neural nets but the back-propagation (back-prop)
paradigm has emerged as the most popular training
mechanism. The back-prop method works by measuring
the difference between output and the observed output
value. The values being calculated at the output layer
are propagated to the previous layers and used for
adjusting the connection weights. Fig. 5 shows a typical
multilayered feedforward neural network.

In [27], a class of polynomial learning network (PLN)
models is used to identify cutting tool conditions; these
multilayered networks have a self-organizing control
structure based on the mechanisms of exhibition and
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Fig. 5. Typical multilayered feedforward neural network.

inhibition. AE signals from an interrupted face-turning
operation are modeled, and tool evolution from normal,
cracked and finally broken tools are discriminated
through network connectivity and node weights. How-
ever, feedforward neural networks require expensive
training information and cannot remain adaptive after
training. In [28,29], an unsupervised ART2 neural net-
work is used for the fusion of AE and force information
and decision making of the tool flank wear state.

In order to overcome neural network drawbacks, a
hybrid model of neural network and fuzzy logic (fuzzy
neural network) is presented. There are many possible
combinations of the two systems; the typical fuzzy neu-
ral network is shown in Fig. 6.

In [30], a fuzzy neural network is used to describe
the relation between the monitoring features, which are

Fig. 6. Typical fuzzy neural network.

derived from wavelet-based AE signals, and the tool
wear condition.

4.5. Sensor and data fusion methodology

The definition of data fusion derived from Subpanel
is as follows: ‘data fusion is a multilevel, multifaceted
process dealing with the automatic detection, associ-
ation, correlation, estimation, and combination of data
and information from multiple sources.’

In tool wear monitoring systems, the architectures of
sensor and data fusion include three types, see Fig. 7.

Based on the type (a), Rangwala and Dornfeld [31]
presented a multiple sensor scheme utilizing cutting
force and AE information, and applied a multilayer,
feedforward neural network with error back-propagation
to monitor tool wear states in a turning operation. In
[32], adaptive time series modeling and band-filtered
energy analysis are implemented in conjunction with the
tool wear condition classification based on an artificial
neural network. In [33], a novel parallel multi-ART2
neural network has been developed to estimate tool wear
condition. Using the maximum frequency-band coher-
ence function of two acceleration signals and the relative
weighted frequency-band power ratio of an AE signal as
input features, the neural network was used to identify
various tool failure states in turning operations.

Fig. 7. Tool wear estimation using sensor and data fusion.
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In [34], AE sensor and cutting force sensor is com-
bined in a new sensor based on type (b) of Fig. 7, which
is able to measure AE and cutting force components sim-
ultaneously. The new sensor was used to reliably moni-
toring tool condition in turning.

In [35], AE and motor current signals are measured
to identify tool wear condition using fuzzy classification,
then the fuzzy values of tool wears with AE and motor
current are fused by fuzzy logic (rule) to estimate tool
wear in turning. Clearly, the monitoring system belongs
to type (c) of Fig. 7.

5. Conclusions

Currently, AE-based sensing technology is the area of
most intense research activity for developing intelligent
tool condition systems. The reason is that the sensitivity
of AE to tool wear and fracture is coupled with a high
response rate of the signal. However, AE signals are
heavily depended on process parameters. Thus, a key
issue is how to reduce these effects in intelligent tool
wear and fracture monitoring using AE signals. Based
on this review, careful signal processing or feature
extraction and integration with other sensor(s) will be an
effective approach for AE-based tool condition monitor-
ing.
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