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In manufacturing systems such as ¯exible manufacturing systems (FMS), one of the most
important issues is accurate detection of the tool conditions under given cutting conditions.
An investigation is presented of a tool condition monitoring system (TCMS), which consists of

a wavelet transform preprocessor for generating features from acoustic emission (AE) signals,
followed by a high speed neural network with fuzzy inference for associating the preprocessor
outputs with the appropriate decisions. A wavelet transform can decompose AE signals into

di�erent frequency bands in the time domain. The root mean square (RMS) values extracted
from the decomposed signal for each frequency band were used as the monitoring feature. A
fuzzy neural network (FNN) is proposed to describe the relationship between the tool con-
ditions and the monitoring features; this requires less computation than a back propagation

neural network (BPNN). The experimental results indicate the monitoring features have a low
sensitivity to changes of the cutting conditions and FNN has a high monitoring success rate in
a wide range of cutting conditions; TCMS with a wavelet fuzzy neural network is feasible.
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1. Introduction

In recent years, one of the most important developments
has been the trend towards cost-savings in the automated
manufacturing environment; an e�ective method is to im-
prove product quality and to reduce production time. Thus,
a challenging question is posed in relation to the reliability
and applicability of tool condition monitoring systems such
that high availability levels of the sophisticated manufac-
turing systems in conjunction with high quality levels of
manufactured components can be achieved.
From a process automation viewpoint, a sensing system

must therefore be devised to detect the progress of tool
condition during cutting operation so that tool failures can
be identi®ed and replaced in time (Li Dan and Mathew,
1990). A fair amount of research has been devoted to the
detection of tool failure. The techniques reported include
the use of optics, electrics, force, torque, power and cur-
rent. The most common techniques in the industrial ma-
chining environment are acoustic emission (AE) and
current (Byrne et al., 1995). In recent years AE sensors

designed for detecting tool failure have been very success-
ful. The major advantage of using AE to monitor the tool
condition is the frequency range of the AE signal is much
higher than the frequency of machine vibrations and en-
vironmental noises, so it does not interfere with the cutting
operation. However, AE signals often have to be treated
with additional signal processing schemes to extract the
most useful information (Iwata and Moriwaki, 1977;
Souquet et al., 1987; Liang and Dornfeld, 1989).
Spectral analysis such as the fast Fourier transform

(FFT) is the most commonly used signal processing tech-
niques in tool condition monitoring systems. A disadvan-
tage is that it has a good solution only in the frequency
domain and a very bad solution in the time domain, so it
loses some signal information in the time domain; it is only
®tted to process stable stochastic signals. Wavelet trans-
forms have recently been proposed as a signi®cant new tool
in signal analysis and processing. It has been used to an-
alyse tool failure monitoring signals (Tansel et al., 1993;
Kasashima et al., 1995; Tansel et al., 1995). The wavelet
transform has a good solution in the frequency domain and
in the time domain; synchronously it can extract more in-
formation in the time domain at di�erent frequency bands.
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Moreover, wavelet transformations require less computa-
tion than FFTs (Daubechies, 1988, 1990; Cody, 1992).
Hence wavelet transforms are ®tted to process AE signal
with an unstable stochastic signal so as to extract the signal
features in relation to tool conditions.
Neural networks have recently been applied to tool

condition monitoring. Neural networks are composed of
simple processing elements, richly interconnected. These
networks can be trained to recognize arbitrary relations
between sets of input±output pairs by adjusting the weight
of the interconnections. Generally, the most commonly
used neural network in manufacturing-related research is
the back propagation neural network (BPNN). However,
BPNN needs to train for a long time, so its application is
limited. We investigate the neural network with fuzzy
inference; it can meet the needs of the actual application
(i.e. real time) because of its fast learning capability
(Dornfeld, 1990; Burke and Rangwala, 1991; Blanco
et al., 1995).
We propose a new drilling condition monitoring method

based on the wavelet transform and a fuzzy neural net-
work. Wavelet transformation of the AE signal is used to
obtain a set of monitoring features. The fuzzy neural net-
work is developed in order to describe the relationship
between the tool condition and the monitoring features.
The experimental results show the feasibility of a tool
condition monitoring system (TCMS) with wavelet fuzzy
neural network. Section 2 provides theoretical background
on the wavelet transform and fuzzy neural networks. Sec-
tion 3 describes the experimental set-up and results. Section
4 is the conclusions.

2. Wavelet transform and fuzzy neural network

2.1. Wavelet transform

We de®ne a square integral function w�t� (namely
w�t� 2 L2�R�� as a family of functions, which satisfy the
following equation:Z 1

ÿ1

jw�w�j2
jwj dw <1 �1�

Assuming

wa;b�t� �
1������jajp w

t ÿ b
a

� �
a; b 2 R; a 6� 0 �2�

wa;b�t� is de®ned as a continuous wavelet; wa;b�t� represents
the family of wavelet obtained from the single w�t� function
by dilations and translations, where a and b are the dilation
and translation parameters, respectively. The parameter a
is related to the frequency. For small absolute values of a,
the expression gives narrow versions of the original func-
tion and corresponds to a high frequency range; for large
absolute values of a, the expression becomes large and

corresponds to low frequencies. The parameter corre-
sponds to the position of the family of functions (Tansel
et al., 1993). According to this discussion, the wavelet
transform is essentially di�erent from the Gobor trans-
form.
If f �t� 2 L2�R�, de®ne the continuous wavelet transform

as below:

wf �a; b� � h f ;wa;bi �
1������jajp Z 1

ÿ1
f �t� w

t ÿ b
a

� �
dt �3�

where h�; �i is the inner product and w tÿb
a

ÿ �
is the complex

conjugation of w tÿb
a

ÿ �
. To work with discrete signals, the

discrete wavelet transform is often used. The discrete
wavelet transform is de®ned as follows:

Cj;k �
Z 1
ÿ1

f �t� wj;k�t�dt j; k 2 Z �4�

where

wj;k�t� �
1����
2j
p w

t ÿ 2jk
2j

� �
�5�

the wavelet coe�cients cj;k are thought of as a time±fre-
quency map of the original signal f �t�.
In terms of the relationship between the wavelet function

w�t� and the scaling function /�t�, namely:

j/̂�w�j2 �
X1

j�ÿ1
jŵ�2jw�j �6�

the discrete scaling function corresponding to the discrete
wavelet function is as follows:

/j;k�t� �
1����
2j
p /

t ÿ 2jk
2j

� �
�7�

It is used to discretize the signal; the sampled values are
de®ned as the scaling coe�cients dj;k:

dj;k �
Z 1
ÿ1

f �t�/j;k�t�dt �8�

when the resolution j > 1; the scaling coe�cients and the
wavelet coe�cients are obtained as follows:

dj�1;k �
X1
ÿ1

h�iÿ 2k�dj;k �9�

cj�1;k �
X1
ÿ1

g�1ÿ 2k�dj;k �10�

where the terms g and h are high pass and low pass ®lters
derived from the wavelet function w�t� and the scaling
function /�t�, the coe�cients dj�1;k and cj�1;k represents a
decomposition of the �jÿ 1�th scaling coe�cient into high
frequency and low frequency terms. Thus, this algorithm
decomposes the original signal f �t� into di�erent frequency
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bands in the time domain. We employ the orthogonal
Daubechies ®lters of length 4.

2.2. Fuzzy neural network

2.2.1. Fuzzy neural network (FNN) net topology

Suppose the input and output pairs are X � �x1; x2 . . . ; xn�
and Y � �y1; y2 . . . ; ym�, respectively. Y is determined by X
and W, based on fuzzy inference it is de®ned as follows:

Y � X �W �11�
and

yj � max min�xj;wij�
ÿ � �i � 1; 2; . . . ; n; j � 1; 2; . . . ;m�

�12�
where X 2 �0; 1�; Y 2 �0; 1�. wij are the elements of the
weight matrix W. Based on this set-up, the FNN net to-
pology is as shown in Fig.1.

2.2.2. Learning algorithm

Assuming the desired FNN output values is Tj, the actual
values is Oj, the minimizing square of the di�erence be-
tween them is E:

E � 1

2
Tj ÿ Oj
ÿ �2 �13�

where Oj � max�min�xi;wij��,
It is well known that

@Oj

@wij
� @E

@Oj

� �
@Oj

@wij

� �
�14�

where

@Oj

@wij
� @ _ �^�xi;wij��

@ ^ �xs;wsj�
@ ^ �xs;wsj�

@wsj
�15�

set

a1 � @ _ �^�xi;wij��
@ ^ �xs;wsj� �

@ _ �^�xs;wsj��; _
i 6�s
�^�xi;wij���

@ ^ �xs;wsj�

a2 � @ ^ �xs;wsj�
@wsj

�16�

In response, values are de®ned as follows:

when ^ �xs;wsj� � _
i6�s
�^�xi;wij��; a1 � 1;

otherwise a1 � ^�xs;wsj�
when xs � wsj; a2 � 1; otherwise a2 � xs

Assuming:

@Oj

@wsj
� D �17�

According to fuzzy minmax inference and smooth deriva-
tive ideas, a fuzzy ruler is constructed as follows:

if xs < wsj and xs � _
i 6�s
�^�xi;wij�� then D � xs

if xs < wsj and xs < _
i 6�s
�^�xi;wij�� and D � x2s

if xs � wsj and wsj � _
i6�s
�^�xi;wij�� then D � 1

if xs � wsj and wsj < _
i6�s
�^�xi;wij�� then D � wsj

�18�

and

@E
@Oj
� ÿ�Tj ÿ Oj� �19�

Set

d � ÿ @E
@Oi

�20�

then

@E
@wij

� djD �21�

The changes for the weight will be obtained from a d-rule
with the expression:

Dwij � ldjD �22�
where l is the learning rate, l 2 �0; 1�.
In order to test the FNN training speed, under the same

condition (training sample) structure �5� 5�, learning rate
�l � 0:8�, convergence error �e � 0:001�, FNN and BPNN
training iteration are 8 and 427, respectively. Hence FNN
is a highly e�ective neural network compared with BPNN.
Figure 2(a and b) shows the behaviour of the training
process.

3. Experimental set-up and results

3.1. Experimental set-up

The schematic diagram of the experimental set-up is shown
in Fig. 3. Cutting tests were performed on a Machining
Center Makino-FNC74-A20. In the experiments, a com-
mercial piezoelectric AE transducer was mounted on a
spindle. AE signals were transduced by a magnetic ¯uid
between the spindle and the tool. During the experiments,
the monitored AE signals were ampli®ed, high passed at 50Fig. 1. FNN net topology.
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kHz, low passed at 1 MHz, then sent via an analogue-to-
digital (A/D) converter to a personal computer (AST/486).
A successful method for detecting tool failure must be

sensitive to tool change and insensitive to the variation of
cutting conditions. Hence cutting tests were conducted at
di�erent conditions to evaluate the performance of the
proposed method. The tool was a high speed steel (HSS)
drill with diameters of 2, 3, 9 and 12 mm. The spindle speed
was 300 and 450 r.p.m.; the feed rate was 20, 25, 30 and 45
mm minÿ1; there was no coolant. The workpiece was 45#
quench steel.

3.2. Tool states

Tool condition was divided into ®ve states: initial wear,
normal wear, acceptable wear, severe wear and failure. In
order to improve the FNN training speed, the tool condi-
tion was coded as follows: initial �1; 0; 0; 0; 0�, normal
�0; 1; 0; 0; 0�, acceptable �0; 0; 1; 0; 0�, severe �0; 0; 0; 1; 0�
and failure �0; 0; 0; 0; 1�. Based on ¯ank wear of the tool,
these conditions are summarized in Table 1.

3.3. Monitoring features

It is well known that the energy level of the AE signal in the
high frequency band gradually increases with increased
tool wear. Figure 4(a±f ) shows the decomposed results of

the AE signal through wavelet decomposition in Fig. 4(a±
f ). represent the energy distribution of the AE signal in the
following frequency bands: 0±62.5, 62.5±125, 125±250,
250±500 kHz and 0.5±1.0 MHz. They indirectly provided
some information about the features of the frequency do-
main. The RMS values of the decomposed results for the
AE signal in each frequency band can represent the signal
features. In the neural network application, it is very im-
portant for feature selection and feature number. The se-
lected features must be independent and their number must
be large enough. The RMS value in each frequency band
was used to describe the features of di�erent tool condi-
tions. The selected features were summarized as follows:

n1 � RMS of wavelet coefficient in the

frequency band �500; 1000� kHz;
n2 � RMS of wavelet coefficient in the

frequency band [250, 500] kHz;

n3 � RMS of wavelet coefficient in the

frequency band �125; 250� kHz;
n4 � RMS of wavelet coefficient in the

frequency band �62:5; 125� kHz;
n5 � RMS of wavelet coefficient in the

frequency band �0; 62:5� kHz.
In order to eliminate the e�ects of signal amplitude and to
meet the needs of the FNN input, the features were treated
using the equation:

Fig. 2. Training process: (a) FNN, (b) BPNN.

Fig. 3. Experimental set-up.

Table 1. Tool condition classi®cation

Tool condition Flank wear Code (FNN output)

Initial wear 0 < wear O 0.1 mm (1,0,0,0,0)
Normal wear 0.1 < wear O 0.3 mm (0,1,0,0,0)

Acceptable wear 0.3 < wear O 0.5 mm (0,0,1,0,0)
Severe wear 0.5 < wear O 0.6 mm (0,0,0,1,0)
Failure 0.6 < wear (0,0,0,0,1)
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ni � niP5
j�1

nj

j � 1; 2; . . . ; 5 �23�

3.4. Experimental results

A total of 80 cutting tests corresponding to variable cutting
states were collected. Fifty samples were randomly picked
as learning samples; the remaining samples were used as
the test samples in the classi®cation phase. The learning

rate of the FNN is 0.8; the weights were initialized to
random values between ÿ0:5 and 0.5. The FNN is a layer
perception with an architecture of 5� 5. The ®ve input
nodes of the FNN correspond to the ®ve feature compo-
nents of the extracted feature vector. The ®nal decision on
tool condition is made according to:

tool condition � max�yj� �i � 1; 2; 3; 4; 5� �24�
where yi is the tool condition value of the FNN output. The
test results are shown in Table 2, which indicates a high
success rate. Thus, feature selection is successful. This re-
sult also shows that features extracted from the AE signal

Fig. 4. Decomposed results for the AE signal at di�erent ¯ank wear by wavelet transformation. Tool diameter 4.7 mm, cutting speed 380
r.p.m., feed rate 20 mm minÿ1, work material 40Cr steel; the tool was a high speed steel (HSS) twist drill, without coolant. (a)

VB � 0:125 mm; (b) VB � 0:20 mm; (c) VB � 0:27 mm; (d) VB � 0:36 mm; (e) VB � 0:52 mm; (f ) failure.
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by wavelet decomposition has a low sensitivity to any
change of the cutting condition. The results meet the needs
of the application.

4. Conclusions

In a manufacturing system, machining e�ciency is easily
in¯uenced by the tool condition in the cutting process.
Among the most complex problems for a tool condition
monitoring system is the extraction of the signal features
and, as accurately as possible, to describe the relationship
between the tool condition and the signal features under a
given cutting condition. We have introduced a wavelet
transform and a new FNN for tool condition monitoring in
drilling. After conducting an investigation it became clear
that the wavelet technique was used to decompose the AE
signal, allowed more independent features to be obtained.
These features were the RMS of the wavelet coe�cient in
the frequency band which had a low sensitivity to changes
in the process variables. It also became clear that the fuzzy
relationship between the tool condition and the monitoring
features may be identi®ed by using a fuzzy neural network,
the training speed of the FNN is faster than that for a
BPNN. In short, the integrated wavelet transform and the
FNN enable a tool condition monitoring system to have a
high monitoring success rate and fast training feed over a
wide range of cutting conditions.
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